4,197 research outputs found

    Electronic Structures and Optical Properties of Partially and Fully Fluorinated Graphene

    Get PDF
    In this letter we study the electronic structures and optical properties of partially and fully fluorinated graphene by a combination of abinitio G0W0 calculations and large-scale multi-orbital tight-binding simulations. We find that for partially fluorinated graphene, the appearance of paired fluorine atoms is more favorable than unpaired atoms. We also show that different types of structural disorder, such as carbon vacancies, fluorine vacancies, fluorine vacancy-clusters and fluorine armchair- and zigzag-clusters, will introduce different types of midgap states and extra excitations within the optical gap. Furthermore we argue that the local formation of sp3sp^3 bonds upon fluorination can be distinguished from other disorder inducing mechanisms which do not destroy the sp2sp^2 hybrid orbitals by measuring the polarization rotation of passing polarized light.Comment: Final version appeared in Phys. Rev. Let

    Decorated Shastry-Sutherland lattice in the spin-1/2 magnet CdCu2(BO3)2

    Get PDF
    We report the microscopic magnetic model for the spin-1/2 Heisenberg system CdCu2(BO3)2, one of the few quantum magnets showing the 1/2-magnetization plateau. Recent neutron diffraction experiments on this compound [M. Hase et al., Phys. Rev. B 80, 104405 (2009)] evidenced long-range magnetic order, inconsistent with the previously suggested phenomenological magnetic model of isolated dimers and spin chains. Based on extensive density-functional theory band structure calculations, exact diagonalizations, quantum Monte Carlo simulations, third-order perturbation theory, as well as high-field magnetization measurements, we find that the magnetic properties of CdCu2(BO3)2 are accounted for by a frustrated quasi-2D magnetic model featuring four inequivalent exchange couplings: the leading antiferromagnetic coupling J_d within the structural Cu2O6 dimers, two interdimer couplings J_t1 and J_t2, forming magnetic tetramers, and a ferromagnetic coupling J_it between the tetramers. Based on comparison to the experimental data, we evaluate the ratios of the leading couplings J_d : J_t1 : J_t2 : J_it = 1 : 0.20 : 0.45 : -0.30, with J_d of about 178 K. The inequivalence of J_t1 and J_t2 largely lifts the frustration and triggers long-range antiferromagnetic ordering. The proposed model accounts correctly for the different magnetic moments localized on structurally inequivalent Cu atoms in the ground-state magnetic configuration. We extensively analyze the magnetic properties of this model, including a detailed description of the magnetically ordered ground state and its evolution in magnetic field with particular emphasis on the 1/2-magnetization plateau. Our results establish remarkable analogies to the Shastry-Sutherland model of SrCu2(BO3)2, and characterize the closely related CdCu2(BO3)2 as a material realization for the spin-1/2 decorated anisotropic Shastry-Sutherland lattice.Comment: 16 pages, 13 figures, 2 tables. Published version with additional QMC dat

    Determining the Quark Mixing Matrix From CP-Violating Asymmetries

    Full text link
    If the Standard Model explanation of CP violation is correct, then measurements of CP-violating asymmetries in BB meson decays can in principle determine the entire quark mixing matrix.Comment: 8 pages (plain TeX), 1 figure (postscript file appended), DAPNIA/SPP 94-06, NSF-PT-94-2, UdeM-LPN-TH-94-18

    Sr2_2Cu(PO4_4)2_2: A real material realization of the 1D nearest neighbor Heisenberg chain

    Full text link
    We present evidence that crystalline Sr_2Cu(PO_4)_2 is a nearly perfect one-dimensional (1D) spin-1/2 anti-ferromagnetic Heisenberg model (AHM) chain compound with nearest neighbor only exchange. We undertake a broad theoretical study of the magnetic properties of this compound using first principles (LDA, LDA+U calculations), exact diagonalization and Bethe-ansatz methodologies to decompose the individual magnetic contributions, quantify their effect, and fit to experimental data. We calculate that the conditions of one-dimensionality and short-ranged magnetic interactions are sufficiently fulfilled that Bethe's analytical solution should be applicable, opening up the possibility to explore effects beyond the infinite chain limit of the AHM Hamiltonian. We begin such an exploration by examining some extrinsic effects such as impurities and defects

    Orbital-spin order and the origin of structural distortion in MgTi2_2O4_4

    Full text link
    We analyze electronic, magnetic, and structural properties of the spinel compound MgTi2_2O4_4 using the local density approximation+U method. We show how MgTi2_2O4_4 undergoes to a canted orbital-spin ordered state, where charge, spin and orbital degrees of freedom are frozen in a geometrically frustrated network by electron interactions. In our picture orbital order stabilize the magnetic ground state and controls the degree of structural distortions. The latter is dynamically derived from the cubic structure in the correlated LDA+U potential. Our ground-state theory provides a consistent picture for the dimerized phase of MgTi2_2O4_4, and might be applicable to frustrated materials in general.Comment: 6 pages, 6 figure

    Role of C in MgC_xNi_3 investigated from first principles

    Full text link
    The influence of vacancies in the CC sub-lattice of MgCNi3MgCNi_{3}, on its structural, electronic and magnetic properties are studied by means of the density-functional based Korringa-Kohn-Rostoker Green's function method formulated in the atomic sphere approximation. Disorder is taken into account by means of coherent-potential approximation. Characterizations representing the change in the lattice properties include the variation in the equilibrium lattice constants, bulk modulus and pressure derivative of the bulk modulus, and that of electronic structure include the changes in the, total, partial and k\mathbf{k}-resolved density of states. The incipient magnetic properties are studied by means of fixed-spin moment method of alloy theory, together in conjunction with the phenomenological Ginzburg-Landau equation for magnetic phase transition. The first-principles calculations reveal that due to the breaking of the CC-NiNi bonds, some of the NiNi 3d states, which were lowered in energy due to strong hybridization, are transfered back to higher energies thereby increasing the itinerant character in the material. The Bloch spectral densities evaluated at the high symmetry points however reveal that the charge redistribution is not uniform over the cubic Brillouin zone, as new states are seen to be created at the Γ\Gamma point, while a shift in the states on the energy scale are seen at other high symmetry points

    About the modern "experimental value" of W boson width.

    Get PDF
    It is shown that the methods which have been used up to now to determine the WW width from the ppˉp\bar p data confirm the SM predictions for some combinations of various phenomenological parameters, however, they do not give an independent value for the WW width. Moreover, the accuracy that could be achieved in future experimental checks of SM predictions for such quantities is limited by effects which require detailed theoretical study.Comment: Latex, 8 pages

    Triple product asymmetries in K, D_(s) and B_(s) decays

    Full text link
    One distinguishes between "true" CP violating triple product (TP) asymmetries which require no strong phases and "fake" asymmetries which are due to strong phases but require no CP violation. So far a single true TP asymmetry has been measured in KLπ+πe+eK_L\to \pi^+\pi^- e^+e^-. A general discussion is presented for T-odd TP asymmetries in four-body decays. It is shown that TP asymmetries vanish for two identical and kinematically indistinguishable particles in the final state. Two examples are D0Kπ+ππ+D^0\to K^-\pi^+\pi^-\pi^+ and D+Kπ+π+π0D^+\to K^-\pi^+\pi^+\pi^0. A non-zero TP asymmetry can be expected when non-trivial kinematic correlations exist, as in the decay KLe+ee+eK_L \to e^+ e^- e^+ e^-. Triple product asymmetries measured in charmed particle decays indicate an interesting pattern of final-state interactions. We reiterate a discussion of TP asymmetries in BB meson decays to two vector mesons each decaying to a pseudoscalar pair, extending results to decays where one vector meson decays into a lepton pair. We derive expressions for time-dependent TP asymmetries for neutral B decays to flavorless states in terms of the neutral BB mass difference Δm\Delta m and the width-difference ΔΓ\Delta\Gamma. Time-integrated true CP violating asymmetries, measurable for untagged BsB_s decays, are shown to be suppressed by neither Γs/Δms\Gamma_s/\Delta m_s nor ΔΓs/Γs\Delta\Gamma_s/\Gamma_s if transversity amplitudes for CP-even and CP-odd states involve different weak phases. In contrast, fake asymmetries require flavor tagging and are suppressed by the former ratio when time-integrated. We apply our results to BKϕB\to K^*\phi and BsϕϕB_s\to\phi\phi data and suggest an application for BsJ/ψϕB_s\to J/\psi\phi.Comment: minor corrections, submitted to Phys. Rev.
    corecore